Auto-instrumentation
If you’re using the OpenTelemetry Operator’s capability to inject auto-instrumentation and you’re not seeing any traces or metrics, follow these troubleshooting steps to understand what’s going on.
Troubleshooting steps
Check installation status
After installing the Instrumentation
resource, make sure that it is installed
correctly by running this command:
kubectl describe otelinst -n <namespace>
Where <namespace>
is the namespace in which the Instrumentation
resource is
deployed.
Your output should look like this:
Name: python-instrumentation
Namespace: application
Labels: app.kubernetes.io/managed-by=opentelemetry-operator
Annotations: instrumentation.opentelemetry.io/default-auto-instrumentation-apache-httpd-image:
ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-apache-httpd:1.0.3
instrumentation.opentelemetry.io/default-auto-instrumentation-dotnet-image:
ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-dotnet:0.7.0
instrumentation.opentelemetry.io/default-auto-instrumentation-go-image:
ghcr.io/open-telemetry/opentelemetry-go-instrumentation/autoinstrumentation-go:v0.2.1-alpha
instrumentation.opentelemetry.io/default-auto-instrumentation-java-image:
ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-java:1.26.0
instrumentation.opentelemetry.io/default-auto-instrumentation-nodejs-image:
ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-nodejs:0.40.0
instrumentation.opentelemetry.io/default-auto-instrumentation-python-image:
ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.39b0
API Version: opentelemetry.io/v1alpha1
Kind: Instrumentation
Metadata:
Creation Timestamp: 2023-07-28T03:42:12Z
Generation: 1
Resource Version: 3385
UID: 646661d5-a8fc-4b64-80b7-8587c9865f53
Spec:
...
Exporter:
Endpoint: http://otel-collector-collector.opentelemetry.svc.cluster.local:4318
...
Propagators:
tracecontext
baggage
Python:
Image: ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.39b0
Resource Requirements:
Limits:
Cpu: 500m
Memory: 32Mi
Requests:
Cpu: 50m
Memory: 32Mi
Resource:
Sampler:
Events: <none>
Check the OpenTelemetry Operator logs
Check the OpenTelemetry Operator logs for errors by running this command:
kubectl logs -l app.kubernetes.io/name=opentelemetry-operator --container manager -n opentelemetry-operator-system --follow
The logs should not show any errors related to auto-instrumentation errors.
Check deployment order
Make sure the deployment order is correct. The Instrumentation
resource must
be deployed before deploying the corresponding Deployment
resources that are
auto-instrumented.
Consider the following auto-instrumentation annotation snippet:
annotations:
instrumentation.opentelemetry.io/inject-python: 'true'
When the pod starts up, the annotation tells the Operator to look for an
Instrumentation
resource in the pod’s namespace, and to inject Python
auto-instrumentation into the pod. It adds an
init-container
called opentelemetry-auto-instrumentation
to the application’s pod, which is
then used to inject the auto-instrumentation into the app container.
Which you can see when you run:
kubectl describe pod <your_pod_name> -n <namespace>
Where <namespace>
is the namespace in which your pod is deployed. The
resulting output should look like the following example, which shows what the
pod spec may look like after auto-instrumentation injection:
Name: py-otel-server-f89fdbc4f-mtsps
Namespace: opentelemetry
Priority: 0
Service Account: default
Node: otel-target-allocator-talk-control-plane/172.24.0.2
Start Time: Mon, 15 Jul 2024 17:23:45 -0400
Labels: app=my-app
app.kubernetes.io/name=py-otel-server
pod-template-hash=f89fdbc4f
Annotations: instrumentation.opentelemetry.io/inject-python: true
Status: Running
IP: 10.244.0.10
IPs:
IP: 10.244.0.10
Controlled By: ReplicaSet/py-otel-server-f89fdbc4f
Init Containers:
opentelemetry-auto-instrumentation-python:
Container ID: containerd://20ecf8766247e6043fcad46544dba08c3ef534ee29783ca552d2cf758a5e3868
Image: ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.45b0
Image ID: ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python@sha256:3ed1122e10375d527d84c826728f75322d614dfeed7c3a8d2edd0d391d0e7973
Port: <none>
Host Port: <none>
Command:
cp
-r
/autoinstrumentation/.
/otel-auto-instrumentation-python
State: Terminated
Reason: Completed
Exit Code: 0
Started: Mon, 15 Jul 2024 17:23:51 -0400
Finished: Mon, 15 Jul 2024 17:23:51 -0400
Ready: True
Restart Count: 0
Limits:
cpu: 500m
memory: 32Mi
Requests:
cpu: 50m
memory: 32Mi
Environment: <none>
Mounts:
/otel-auto-instrumentation-python from opentelemetry-auto-instrumentation-python (rw)
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-x2nmj (ro)
Containers:
py-otel-server:
Container ID: containerd://95fb6d06b08ead768f380be2539a93955251be6191fa74fa2e6e5616036a8f25
Image: otel-target-allocator-talk:0.1.0-py-otel-server
Image ID: docker.io/library/import-2024-07-15@sha256:a2ed39e9a39ca090fedbcbd474c43bac4f8c854336a8500e874bd5b577e37c25
Port: 8082/TCP
Host Port: 0/TCP
State: Running
Started: Mon, 15 Jul 2024 17:23:52 -0400
Ready: True
Restart Count: 0
Environment:
OTEL_NODE_IP: (v1:status.hostIP)
OTEL_POD_IP: (v1:status.podIP)
OTEL_METRICS_EXPORTER: console,otlp_proto_http
OTEL_LOGS_EXPORTER: otlp_proto_http
OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED: true
PYTHONPATH: /otel-auto-instrumentation-python/opentelemetry/instrumentation/auto_instrumentation:/otel-auto-instrumentation-python
OTEL_TRACES_EXPORTER: otlp
OTEL_EXPORTER_OTLP_TRACES_PROTOCOL: http/protobuf
OTEL_EXPORTER_OTLP_METRICS_PROTOCOL: http/protobuf
OTEL_SERVICE_NAME: py-otel-server
OTEL_EXPORTER_OTLP_ENDPOINT: http://otelcol-collector.opentelemetry.svc.cluster.local:4318
OTEL_RESOURCE_ATTRIBUTES_POD_NAME: py-otel-server-f89fdbc4f-mtsps (v1:metadata.name)
OTEL_RESOURCE_ATTRIBUTES_NODE_NAME: (v1:spec.nodeName)
OTEL_PROPAGATORS: tracecontext,baggage
OTEL_RESOURCE_ATTRIBUTES: service.name=py-otel-server,service.version=0.1.0,k8s.container.name=py-otel-server,k8s.deployment.name=py-otel-server,k8s.namespace.name=opentelemetry,k8s.node.name=$(OTEL_RESOURCE_ATTRIBUTES_NODE_NAME),k8s.pod.name=$(OTEL_RESOURCE_ATTRIBUTES_POD_NAME),k8s.replicaset.name=py-otel-server-f89fdbc4f,service.instance.id=opentelemetry.$(OTEL_RESOURCE_ATTRIBUTES_POD_NAME).py-otel-server
Mounts:
/otel-auto-instrumentation-python from opentelemetry-auto-instrumentation-python (rw)
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-x2nmj (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
kube-api-access-x2nmj:
Type: Projected (a volume that contains injected data from multiple sources)
TokenExpirationSeconds: 3607
ConfigMapName: kube-root-ca.crt
ConfigMapOptional: <nil>
DownwardAPI: true
opentelemetry-auto-instrumentation-python:
Type: EmptyDir (a temporary directory that shares a pod's lifetime)
Medium:
SizeLimit: 200Mi
QoS Class: Burstable
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 99s default-scheduler Successfully assigned opentelemetry/py-otel-server-f89fdbc4f-mtsps to otel-target-allocator-talk-control-plane
Normal Pulling 99s kubelet Pulling image "ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.45b0"
Normal Pulled 93s kubelet Successfully pulled image "ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.45b0" in 288.756166ms (5.603779501s including waiting)
Normal Created 93s kubelet Created container opentelemetry-auto-instrumentation-python
Normal Started 93s kubelet Started container opentelemetry-auto-instrumentation-python
Normal Pulled 92s kubelet Container image "otel-target-allocator-talk:0.1.0-py-otel-server" already present on machine
Normal Created 92s kubelet Created container py-otel-server
Normal Started 92s kubelet Started container py-otel-server
If the Instrumentation
resource isn’t present by the time the Deployment
is
deployed, the init-container
can’t be created. This means that if the
Deployment
resource is deployed before you deploy the Instrumentation
resource, the auto-instrumentation fails to initialize.
Check that the opentelemetry-auto-instrumentation
init-container
has started
up correctly (or has even started up at all), by running the following command:
kubectl get events -n <namespace>
Where <namespace>
is the namespace in which your pod is deployed. The
resulting output should look like the following example:
53s Normal Created pod/py-otel-server-7f54bf4cbc-p8wmj Created container opentelemetry-auto-instrumentation
53s Normal Started pod/py-otel-server-7f54bf4cbc-p8wmj Started container opentelemetry-auto-instrumentation
If the output is missing Created
or Started
entries for
opentelemetry-auto-instrumentation
, there might be an issue with your
auto-instrumentation configuration. This can be the result of any of the
following:
- The
Instrumentation
resource wasn’t installed or wasn’t installed properly. - The
Instrumentation
resource was installed after the application was deployed. - There’s an error in the auto-instrumentation annotation, or the annotation is in the wrong spot. See the next section.
You might also want to check the output of the events command for any errors, as these might help point to your issue.
Check the auto-instrumentation annotation
Consider the following auto-instrumentation annotation snippet:
annotations:
instrumentation.opentelemetry.io/inject-python: 'true'
If your Deployment
resource is deployed to a namespace called application
and you have an Instrumentation
resource called my-instrumentation
which is
deployed to a namespace called opentelemetry
, then the above annotation will
not work.
Instead, the annotation should be:
annotations:
instrumentation.opentelemetry.io/inject-python: 'opentelemetry/my-instrumentation'
Where opentelemetry
is the namespace of the Instrumentation
resource, and
my-instrumentation
is the name of the Instrumentation
resource.
The possible values for the annotation can be:
- “true” - inject
OpenTelemetryCollector
resource from the namespace. - “sidecar-for-my-app” - name of
OpenTelemetryCollector
CR instance in the current namespace. - “my-other-namespace/my-instrumentation” - name and namespace of
OpenTelemetryCollector
CR instance in another namespace. - “false” - do not inject
Check the auto-instrumentation configuration
The auto-instrumentation annotation might have not been added correctly. Check for the following:
- Are you auto-instrumenting for the right language? For example, did you try to auto-instrument a Python application by adding a JavaScript auto-instrumentation annotation instead?
- Did you put the auto-instrumentation annotation in the right location? When
you’re defining a
Deployment
resource, there are two locations where you could add annotations:spec.metadata.annotations
, andspec.template.metadata.annotations
. The auto-instrumentation annotation needs to be added tospec.template.metadata.annotations
, otherwise it doesn’t work.
Check auto-instrumentation endpoint configuration
The spec.exporter.endpoint
configuration in the Instrumentation
resource
allows you to define the destination for your telemetry data. If you omit it, it
defaults to http://localhost:4317
, which causes the data to be dropped.
If you’re sending out your telemetry to a Collector, the
value of spec.exporter.endpoint
must reference the name of your Collector
Service
.
For example: http://otel-collector.opentelemetry.svc.cluster.local:4318
.
Where otel-collector
is the name of the OTel Collector Kubernetes
Service
.
In addition, if the Collector is running in a different namespace, you must
append opentelemetry.svc.cluster.local
to the Collector’s service name, where
opentelemetry
is the namespace in which the Collector resides. It can be any
namespace of your choosing.
Finally, make sure that you are using the right Collector port. Normally, you
can choose either 4317
(gRPC) or 4318
(HTTP); however, for
Python auto-instrumentation, you can only use 4318
.
Check configuration sources
Auto-instrumentation currently overrides Java’s JAVA_TOOL_OPTIONS
, Python’s
PYTHONPATH
, and Node.js’s NODE_OPTIONS
for Node.js when set in a Docker
image or when defined in a ConfigMap
. This is a known issue, and as a result,
these methods of setting these environment variables should be avoided until the
issue is resolved.
See reference issues for Java, Python, and Node.js.
Comentarios
¿Fue útil esta página?
Thank you. Your feedback is appreciated!
Please let us know how we can improve this page. Your feedback is appreciated!